Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Journal of Clinical Medicine, 14(11), p. 3946, 2022

DOI: 10.3390/jcm11143946

Links

Tools

Export citation

Search in Google Scholar

Experimental Investigation of Material Transfer on Bearings for Total Hip Arthroplasty—A Retrieval Study on Ceramic and Metallic Femoral Heads

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Metallic deposition is a commonly observed phenomenon on the surface of revised femoral heads in total hip arthroplasty and can lead to increased wear due to third bodies. In order to find out the origin and composition of the transfer material, 98 retrieved femoral heads of different materials were examined with regard to the cause of revision, localization, pattern and composition of the transfer material by energy dispersive X-ray spectroscopy. We found that in 53.1%, the deposition was mostly in the region of the equator and the adjacent pole of the femoral heads. The most common cause for revision of heads with metallic deposition was polyethylene wear (43.9%). Random stripes (44.9%), random patches (41.8%) and solid patches (35.7%) were most prevalent on retrieved femoral heads. Random patches were a typical pattern in ceramic-on-ceramic bearing couples. The solid patch frequently occurred in association with dislocation of the femoral head (55%). The elemental analysis of the depositions showed a variety of different materials. In most cases, titanium was an element of the transferred material (76.5%). In addition to metallic components, several non-metallic components were also detected, such as carbon (49%) or sulfur (4.1%). Many of the determined elements could be assigned with regard to their origin with the help of the associated revision cause. Since the depositions lead to an introduction of third-body particles and thus to increased wear, the depositions on the bearing surfaces should be avoided in any case.