Published in

Public Library of Science, PLoS ONE, 7(17), p. e0271993, 2022

DOI: 10.1371/journal.pone.0271993

Links

Tools

Export citation

Search in Google Scholar

Dietary and nutritional interventions in children with cerebral palsy: A systematic literature review

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background Cerebral palsy is an extremely severe brain injury associated with multiple nutritional and clinical issues, such as underweight, gastroesophageal reflux, constipation, and nutrient deficiency. Evidence-based dietary and nutritional interventions may improve the quality of life of children with cerebral palsy. Aim Systematically review randomized clinical trials evaluating nutritional and dietary interventions in the clinical, nutritional, and neurodevelopmental aspects of children with cerebral palsy. Methods A search was performed in electronic databases (LILACS, Medline, Web of Science, Embase, Scopus, Cochrane Library, ClinicalTrials.gov, Brazilian Digital Library of Theses and Dissertations, ProQuest Dissertations and Theses Database, OpenGrey) using keywords. The search was firstly performed in May 2020 and updated on June 18th, 2021. Eligible studies were randomized clinical trials, that included children between 2 and 12 years old, and evaluated the effect of nutritional or dietetic interventions on clinical, nutritional or neurodevelopmental outcomes. Risk of bias was investigated using the RoB-2 tool. The study was registered on PROSPERO (CRD42020181284). Results Fifteen studies were selected. Positive results included the use of whey-based or pectin-enriched enteral formulas for gastroesophageal reflux (n = 6); 25-hydroxy-vitamin D supplementation for hypovitaminosis D (n = 2); supplementation with lipid mixture or diet with high-density energy for improvements in anthropometric measures (n = 2); supplementation with probiotics, prebiotics, symbiotics or magnesium for constipation (n = 2); nutritional support system for gross motor function (n = 1); lactoferrin and iron hydroxide polymaltose for iron deficiency anemia (n = 1); and educational intervention to improve feeding skills (n = 1). The overall risk of bias was high for 60% of the studies, and some concerns were raised for the remaining 40%. Conclusion Some promising dietary and nutritional interventions may promote important clinical improvements for patients with cerebral palsy. However, evidence is weak, as few clinical trials have been published with many methodological errors, leading to a high risk of bias.