Published in

Frontiers Media, Frontiers in Behavioral Neuroscience, (16), 2022

DOI: 10.3389/fnbeh.2022.856276

Links

Tools

Export citation

Search in Google Scholar

The Cycling Brain in the Workplace: Does Workload Modulate the Menstrual Cycle Effect on Cognition?

Journal article published in 2022 by Min Xu, Dandan Chen, Hai Li, Hongzhi Wang, Li-Zhuang Yang ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Recent decades have witnessed increased research efforts to clarify how the menstrual cycle influence females’ cognitive and emotional functions. Despite noticeable progress, the research field faces the challenges of inconsistency and low generalizability of research findings. Females of reproductive ages are a heterogeneous population. Generalizing the results of female undergraduates to women in the workplace might be problematic. Furthermore, the critical cognitive processes for daily life and work deserve additional research efforts for improved ecological validity. Thus, this study investigates cognitive performance across the menstrual cycle using a sample of young nurses with similar duties. We developed a mini-computerized cognitive battery to assess four mental skills critical for nursing work: cognitive flexibility, divided attention, response inhibition, and working memory. Participants completed the cognitive battery at menses, late-follicular, and mid-luteal phases. In addition, they were classified into low- and high workload groups according to their subjective workload ratings. Our results demonstrate a general mid-luteal cognitive advantage. Besides, this study reveals preliminary evidence that workload modulates the menstrual cycle effect on cognition. Only females of low workload manifest the mid-luteal cognitive advantage on divided attention and response inhibition, implying that a suitable workload threshold might be necessary for regular neuro-steroid interactions. Thus, this study advocates the significance of research focusing on the cycling brain under workloads.