Published in

American Institute of Physics, Applied Physics Letters, 4(121), p. 042402, 2022

DOI: 10.1063/5.0097152

Links

Tools

Export citation

Search in Google Scholar

Realization of the skyrmionic logic gates and diodes in the same racetrack with enhanced and modified edges

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Magnetic skyrmions are topological quasiparticles with nanoscale size and high mobility, which have potential applications in information storage and spintronic devices. Here, we computationally investigate the dynamics of isolated skyrmions in a ferromagnetic racetrack, where magnetic properties of the edges are enhanced and modified, forming a channel with lower magnetic anisotropy for skyrmion motion. It is found that the rectangular notch at the edge can have a pinning effect on the skyrmion and enrich the dynamics of the skyrmion. Based on the racetrack with modified edges and the notch, we design a racetrack that realizes the skyrmionic logic AND, OR, and NOT gates as well as the diode in the same magnetic racetrack. It is found that the driving current density could be much smaller than those used in previous designs of skyrmion-based logic gates. By slightly altering the shape of the racetrack, we also design the NAND and NOR gates. Finally, we study the feasibility of our design at finite temperatures. Our results may contribute to the design of nonvolatile spintronic devices with integrated multiple functions and ultra-low energy consumption.