Published in

Semina: Ciências Agrárias, 3(42), p. 1145-1166, 2022

DOI: 10.5433/1679-0359.2022v43n3p1145

Links

Tools

Export citation

Search in Google Scholar

Induction of salt stress tolerance in cherry tomatoes under different salicylic acid application methods

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Salinity is among the biggest challenges of irrigated agriculture, as it induces several limitations to the growth and physiology of plants; therefore, strategies should be sought that minimize its impacts on plants. In this scenario, the present study was developed to examine the effects of different salicylic acid (SA) application methods on photosynthetic pigments, chlorophyll a fluorescence, gas exchange, and biomass accumulation of cherry tomato under salt stress. The study was carried out in a greenhouse, using a Regosol soil (Psamments) with a sandy-loam texture. The treatments were distributed in a completely randomized design, in a 2 × 4 factorial arrangement consisting of two levels of electrical conductivity in the irrigation water (0.6 or 2.6 dS m-1) and four salicylic acid application methods (M1 = without SA [control] application; M2 = foliar spray; M3 = irrigation; or M4 = spray and irrigation), with five replicates. Irrigation with 2.6 dS m-1 salinity water negatively affected chlorophyll a fluorescence and the total chlorophyll, chlorophyll a, and carotenoid contents, in addition to inhibiting stem dry biomass production and root/shoot ratio. Foliar spray with salicylic acid minimized the deleterious effects of salt stress on gas exchange and chlorophyll content and increased leaf and root dry biomass accumulation and the root/shoot ratio of cherry tomatoes at 120 days after sowing.