Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science, 6600(376), p. 1491-1495, 2022

DOI: 10.1126/science.abk3126

Links

Tools

Export citation

Search in Google Scholar

8000-year doubling of Midwestern forest biomass driven by population- and biome-scale processes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Changes in woody biomass over centuries to millennia are poorly known, leaving unclear the magnitude of terrestrial carbon fluxes before industrial-era disturbance. Here, we statistically reconstructed changes in woody biomass across the upper Midwestern region of the United States over the past 10,000 years using a Bayesian model calibrated to preindustrial forest biomass estimates and fossil pollen records. After an initial postglacial decline, woody biomass nearly doubled during the past 8000 years, sequestering 1800 teragrams. This steady accumulation of carbon was driven by two separate ecological responses to regionally changing climate: the spread of forested biomes and the population expansion of high-biomass tree species within forests. What took millennia to accumulate took less than two centuries to remove: Industrial-era logging and agriculture have erased this carbon accumulation.