Published in

CENTAURO S.r.l. BOLOGNA, Neuroradiology Journal, The, 6(34), p. 667-675, 2021

DOI: 10.1177/19714009211021781

Links

Tools

Export citation

Search in Google Scholar

Edge-enhancing gradient echo with multi-image co-registration and averaging (EDGE-MICRA) for targeting thalamic centromedian and parafascicular nuclei

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Background and purpose Deep brain stimulation of the thalamus is an effective treatment for multiple neurological disorders. The centromedian and parafascicular nuclei are recently emerging targets for multiple conditions, such as epilepsy and Tourette syndrome; however, their limited visibility on conventional magnetic resonance imaging sequences has been a major obstacle. The goal of this study was to demonstrate the feasibility of a high-resolution and high-contrast targeting sequence for centromedian-parafascicular deep brain stimulation using a recently described magnetic resonance imaging sequence, three-dimensional edge-enhancing gradient echo. Methods The three-dimensional edge-enhancing gradient echo sequence was performed on a normal volunteer for a total of six acquisitions. Multi-image co-registration and averaging was performed by first co-registering each of the six scans and then averaging to produce an edge-enhancing gradient echo-multi-image co-registration and averaging scan. The averaging was also performed for two, three, four and five scans to assess the change in the signal-to-noise ratio and identify the ideal balance of image quality and scan time. Results The edge-enhancing gradient echo-multi-image co-registration and averaging scan allowed clear boundary delineation of the centromedian and parafascicular nuclei. The signal-to-noise ratio increased as a function of increasing scan number, but the added gain was small beyond four scans for the imaging parameters used in this study. Conclusions The recently described three-dimensional edge-enhancing gradient echo sequence provides an easily implementable approach, using widely available magnetic resonance imaging technology without complex post-processing techniques, to delineate centromedian and parafascicular nuclei for deep brain stimulation targeting.