Published in

MDPI, Biomedicines, 10(9), p. 1417, 2021

DOI: 10.3390/biomedicines9101417

Links

Tools

Export citation

Search in Google Scholar

Perfusion Patterns in Patients with Chronic Limb-Threatening Ischemia versus Control Patients Using Near-Infrared Fluorescence Imaging with Indocyanine Green

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In assessing the severity of lower extremity arterial disease (LEAD), physicians rely on clinical judgements supported by conventional measurements of macrovascular blood flow. However, current diagnostic techniques provide no information about regional tissue perfusion and are of limited value in patients with chronic limb-threatening ischemia (CLTI). Near-infrared (NIR) fluorescence imaging using indocyanine green (ICG) has been used extensively in perfusion studies and is a possible modality for tissue perfusion measurement in patients with CLTI. In this prospective cohort study, ICG NIR fluorescence imaging was performed in patients with CLTI and control patients using the Quest Spectrum Platform® (Middenmeer, The Netherlands). The time–intensity curves were analyzed using the Quest Research Framework. Fourteen parameters were extracted. Successful ICG NIR fluorescence imaging was performed in 19 patients with CLTI and in 16 control patients. The time to maximum intensity (seconds) was lower for CLTI patients (90.5 vs. 143.3, p = 0.002). For the inflow parameters, the maximum slope, the normalized maximum slope and the ingress rate were all significantly higher in the CLTI group. The inflow parameters observed in patients with CLTI were superior to the control group. Possible explanations for the increased inflow include damage to the regulatory mechanisms of the microcirculation, arterial stiffness, and transcapillary leakage.