Published in

PLOS Sustainability and Transformation, 4(1), p. e0000010, 2022

DOI: 10.1371/journal.pstr.0000010

Links

Tools

Export citation

Search in Google Scholar

The hidden value of trees: Quantifying the ecosystem services of tree lineages and their major threats across the contiguous US

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Trees provide critical contributions to human well-being. They sequester and store greenhouse gasses, filter air pollutants, provide wood, food, and other products, among other benefits. These benefits are threatened by climate change, fires, pests and pathogens. To quantify the current value of the flow of ecosystem services from U.S. trees, and the threats they face, we combine macroevolutionary and economic valuation approaches using spatially explicit data about tree species and lineages. We find that the value of five key ecosystem services with adequate data generated by US trees is $114 billion per annum (low: $85 B; high: $137 B; 2010 USD). The non-market value of trees from carbon storage and air pollution removal far exceed their commercial value from wood products and food crops. Two lineages—pines and oaks—account for 42% of the value of these services. The majority of species face threats from climate change, many face increasing fire risk, and known pests and pathogens threaten 40% of total woody biomass. The most valuable US tree species and lineages are among those most threatened by known pests and pathogens, with species most valuable for carbon storage most at risk from increasing fire threat. High turnover of tree species across the continent results in a diverse set of species distributed across the tree of life contributing to ecosystem services in the U.S. The high diversity of taxa across U.S. forests may be important in buffering ecosystem service losses if and when the most valuable lineages are compromised.