Dissemin is shutting down on January 1st, 2025

Published in

MDPI, International Journal of Molecular Sciences, 23(22), p. 12722, 2021

DOI: 10.3390/ijms222312722

Links

Tools

Export citation

Search in Google Scholar

Placental Endocrine Activity: Adaptation and Disruption of Maternal Glucose Metabolism in Pregnancy and the Influence of Fetal Sex

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The placenta is an endocrine fetal organ, which secretes a plethora of steroid- and proteo-hormones, metabolic proteins, growth factors, and cytokines in order to adapt maternal physiology to pregnancy. Central to the growth of the fetus is the supply with nutrients, foremost with glucose. Therefore, during pregnancy, maternal insulin resistance arises, which elevates maternal blood glucose levels, and consequently ensures an adequate glucose supply for the developing fetus. At the same time, maternal β-cell mass and function increase to compensate for the higher insulin demand. These adaptations are also regulated by the endocrine function of the placenta. Excessive insulin resistance or the inability to increase insulin production accordingly disrupts physiological modulation of pregnancy mediated glucose metabolism and may cause maternal gestational diabetes (GDM). A growing body of evidence suggests that this adaptation of maternal glucose metabolism differs between pregnancies carrying a girl vs. pregnancies carrying a boy. Moreover, the risk of developing GDM differs depending on the sex of the fetus. Sex differences in placenta derived hormones and bioactive proteins, which adapt and modulate maternal glucose metabolism, are likely to contribute to this sexual dimorphism. This review provides an overview on the adaptation and maladaptation of maternal glucose metabolism by placenta-derived factors, and highlights sex differences in this regulatory network.