Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Sensors, 5(21), p. 1897, 2021

DOI: 10.3390/s21051897

Links

Tools

Export citation

Search in Google Scholar

Deploying an NFV-Based Experimentation Scenario for 5G Solutions in Underserved Areas

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Presently, a significant part of the world population does not have Internet access. The fifth-generation cellular network technology evolution (5G) is focused on reducing latency, increasing the available bandwidth, and enhancing network performance. However, researchers and companies have not invested enough effort into the deployment of the Internet in remote/rural/undeveloped areas for different techno-economic reasons. This article presents the result of a collaboration between Brazil and the European Union, introducing the steps designed to create a fully operational experimentation scenario with the main purpose of integrating the different achievements of the H2020 5G-RANGE project so that they can be trialed together into a 5G networking use case. The scenario encompasses (i) a novel radio access network that targets a bandwidth of 100 Mb/s in a cell radius of 50 km, and (ii) a network of Small Unmanned Aerial Vehicles (SUAV). This set of SUAVs is NFV-enabled, on top of which Virtual Network Functions (VNF) can be automatically deployed to support occasional network communications beyond the boundaries of the 5G-RANGE radio cells. The whole deployment implies the use of a virtual private overlay network enabling the preliminary validation of the scenario components from their respective remote locations, and simplifying their subsequent integration into a single local demonstrator, the configuration of the required GRE/IPSec tunnels, the integration of the new 5G-RANGE physical, MAC and network layer components and the overall validation with voice and data services.