Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 49(118), 2021

DOI: 10.1073/pnas.2111880118

Links

Tools

Export citation

Search in Google Scholar

How chain dynamics affects crack initiation in double-network gels

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Fracture in soft materials often couples a wide range of time and length scales. To date, research is mostly focused at the meso- and macroscale in which the continuum mechanics approach is expected to work, and the deformation surrounding the crack tip can be directly observed. Yet understanding at the network scale is very limited. A relevant question is how does chain dynamics at the network scale control fracture in rate-independent materials? Here, we study the role of polymer dynamics on the fracture and nonlinear crack tip behaviors of rate-independent double-network gels. We believe this work is crucially important for understanding the dynamic molecular process of fracture and for further facilitating theoretical approaches to predict failure in soft materials.