Dissemin is shutting down on January 1st, 2025

Published in

SAGE Publications, Journal of Endovascular Therapy, p. 152660282211058, 2022

DOI: 10.1177/15266028221105840

Links

Tools

Export citation

Search in Google Scholar

Deep Learning–Based Intraoperative Stent Graft Segmentation on Completion Digital Subtraction Angiography During Endovascular Aneurysm Repair

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Purpose: Modern endovascular hybrid operating rooms generate large amounts of medical images during a procedure, which are currently mostly assessed by eye. In this paper, we present fully automatic segmentation of the stent graft on the completion digital subtraction angiography during endovascular aneurysm repair, utilizing a deep learning network. Technique: Completion digital subtraction angiographies (cDSAs) of 47 patients treated for an infrarenal aortic aneurysm using EVAR were collected retrospectively. A two-dimensional convolutional neural network (CNN) with a U-Net architecture was trained for segmentation of the stent graft from the completion angiographies. The cross-validation resulted in an average Dice similarity score of 0.957 ± 0.041 and median of 0.968 (IQR: 0.950 – 0.976). The mean and median of the average surface distance are 1.266 ± 1.506 mm and 0.870 mm (IQR: 0.490 – 1.430), respectively. Conclusion: We developed a fully automatic stent graft segmentation method based on the completion digital subtraction angiography during EVAR, utilizing a deep learning network. This can provide the platform for the development of intraoperative analytical applications in the endovascular hybrid operating room such as stent graft deployment accuracy, endoleak visualization, and image fusion correction.