Springer Nature [academic journals on nature.com], Translational Psychiatry, 1(12), 2022
DOI: 10.1038/s41398-022-02035-4
Full text: Download
AbstractThe serotonin-transporter-linked promoter region (5-HTTLPR) has been widely investigated as contributing to depression vulnerability. Nevertheless, empirical research provides wide contrasting findings regarding its involvement in the etiopathogenesis of the disorder. Our hypothesis was that such discrepancy can be explained considering time as moderating factor. We explored this hypothesis, exploiting a meta analytic approach. We searched PubMed, PsychoINFO, Scopus and EMBASE databases and 1096 studies were identified and screened, resulting in 22 studies to be included in the meta-analyses. The effect of the 5-HTTLPR x stress interaction on depression risk was found to be moderated by the following temporal factors: the duration of stress (i.e. chronic vs. acute) and the time interval between end of stress and assessment of depression (i.e. within 1 year vs. more than 1 year). When stratifying for the duration of stress, the effect of the 5-HTTLPR x stress interaction emerged only in the case of chronic stress, with a significant subgroup difference (p = 0.004). The stratification according to time interval revealed a significant interaction only for intervals within 1 year, though no difference between subgroups was found. The critical role of time interval clearly emerged when considering only chronic stress: a significant effect of the 5-HTTLPR and stress interaction was confirmed exclusively within 1 year and a significant subgroup difference was found (p = 0.01). These results show that the 5-HTTLPR x stress interaction is a dynamic process, producing different effects at different time points, and indirectly confirm that s-allele carriers are both at higher risk and more capable to recover from depression. Overall, these findings expand the current view of the interplay between 5-HTTLPR and stress adding the temporal dimension, that results in a three-way interaction: gene x environment x time.