Published in

Nature Research, Communications Biology, 1(4), 2021

DOI: 10.1038/s42003-021-02704-y

Links

Tools

Export citation

Search in Google Scholar

A chromosome-level genome sequence of Chrysanthemum seticuspe, a model species for hexaploid cultivated chrysanthemum

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractChrysanthemums are one of the most industrially important cut flowers worldwide. However, their segmental allopolyploidy and self-incompatibility have prevented the application of genetic analysis and modern breeding strategies. We thus developed a model strain, Gojo-0 (Chrysanthemum seticuspe), which is a diploid and self-compatible pure line. Here, we present the 3.05 Gb chromosome-level reference genome sequence, which covered 97% of the C. seticuspe genome. The genome contained more than 80% interspersed repeats, of which retrotransposons accounted for 72%. We identified recent segmental duplication and retrotransposon expansion in C. seticuspe, contributing to arelatively large genome size. Furthermore, we identified a retrotransposon family, SbdRT, which was enriched in gene-dense genome regions and had experienced a very recent transposition burst. We also demonstrated that the chromosome-level genome sequence facilitates positional cloning in C. seticuspe. The genome sequence obtained here can greatly contribute as a reference for chrysanthemum in front-line breeding including genome editing.