Published in

MDPI, Materials, 12(15), p. 4074, 2022

DOI: 10.3390/ma15124074

Links

Tools

Export citation

Search in Google Scholar

Cytotoxic Potential of Bio-Silica Conjugate with Different Sizes of Silver Nanoparticles for Cancer Cell Death

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Well-defined silver nanoparticles were doped into bio-based amorphous silica (Ag-b-SiO2) with different silver contents (from 2 to 20 wt%) by a solvent-free procedure. The four as-synthetized samples were hydrogenated at 300 °C to ensure the formation of zero-valent Ag nanoparticles. The prepared samples were characterized by X-ray powder diffraction (XRD), elemental analysis, N2 sorption measurements, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HR-TEM). The characterization data confirmed the formation of well-defined zero-valent silver nanoparticles in the range of 3–10 nm in the low-loading samples, while in high-loading samples, bulky particles of silver in the range of 200–500 nm were formed. The in vitro cytotoxic activities of the Ag-b-SiO2 samples were tested against the tumor cell lines of breast (MCF-7), liver (HepG2), and colon (HCT 116) over a concentration range of 0.01 to 1000 g. The prepared samples exhibited a wide range of cytotoxic activities against cancer cells. An inverse relationship was observed between the silver nanoparticles’ size and the cytotoxic activity, while a direct relationship between the silver nanoparticles’ size and the apoptotic cell death was noticed.