Published in

Public Library of Science, PLoS ONE, 6(16), p. e0252325, 2021

DOI: 10.1371/journal.pone.0252325

Links

Tools

Export citation

Search in Google Scholar

Decreased glucocerebrosidase activity and substrate accumulation of glycosphingolipids in a novel GBA1 D409V knock-in mouse model

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Multiple mutations have been described in the human GBA1 gene, which encodes the lysosomal enzyme beta-glucocerebrosidase (GCase) that degrades glucosylceramide and is pivotal in glycosphingolipid substrate metabolism. Depletion of GCase, typically by homozygous mutations in GBA1, is linked to the lysosomal storage disorder Gaucher’s disease (GD) and distinct or heterozygous mutations in GBA1 are associated with increased Parkinson’s disease (PD) risk. While numerous genes have been linked to heritable PD, GBA1 mutations in aggregate are the single greatest risk factor for development of idiopathic PD. The importance of GCase in PD necessitates preclinical models in which to study GCase-related mechanisms and novel therapeutic approaches, as well as to elucidate the molecular mechanisms leading to enhanced PD risk in GBA1 mutation carriers. The aim of this study was to develop and characterize a novel GBA1 mouse model and to facilitate wide accessibility of the model with phenotypic data. Herein we describe the results of molecular, biochemical, histological, and behavioral phenotyping analyses in a GBA1 D409V knock-in (KI) mouse. This mouse model exhibited significantly decreased GCase activity in liver and brain, with substantial increases in glycosphingolipid substrates in the liver. While no changes in the number of dopamine neurons in the substantia nigra were noted, subtle changes in striatal neurotransmitters were observed in GBA1 D409V KI mice. Alpha-synuclein pathology and inflammation were not observed in the nigrostriatal system of this model. In summary, the GBA1 D409V KI mouse model provides an ideal model for studies aimed at pharmacodynamic assessments of potential therapies aiming to restore GCase.