Published in

MDPI, Plants, 7(10), p. 1343, 2021

DOI: 10.3390/plants10071343

Links

Tools

Export citation

Search in Google Scholar

Fine Mapping of a Major Pleiotropic QTL Associated with Sesamin and Sesamolin Variation in Sesame (Sesamum indicum L.)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Deciphering the genetic basis of quantitative agronomic traits is a prerequisite for their improvement. Herein, we identified loci governing the main sesame lignans, sesamin and sesamolin variation in a recombinant inbred lines (RILs, F8) population under two environments. The content of the two lignans in the seeds was investigated by HPLC. The sesamin and sesamolin contents ranged from 0.33 to 7.52 mg/g and 0.36 to 2.70 mg/g, respectively. In total, we revealed 26 QTLs on a linkage map comprising 424 SSR markers, including 16 and 10 loci associated with sesamin and sesamolin variation, respectively. Among them, qSmin_11.1 and qSmol_11.1 detected in both the two environments explained 67.69% and 46.05% of the phenotypic variation of sesamin and sesamolin, respectively. Notably, qSmin11-1 and qSmol11-1 were located in the same interval of 127–127.21 cM on LG11 between markers ZMM1776 and ZM918 and acted as a pleiotropic locus. Furthermore, two potential candidate genes (SIN_1005755 and SIN_1005756) at the same locus were identified based on comparative transcriptome analysis. Our results suggest the existence of a single gene of large effect that controls expression, both of sesamin and sesamolin, and provide genetic information for further investigation of the regulation of lignan biosynthesis in sesame.