Published in

NNC RK Bulletin, 2, p. 53-61, 2022

DOI: 10.52676/1729-7885-2022-2-53-61

Links

Tools

Export citation

Search in Google Scholar

Pahute Mesa Travel Times at Kuril–kamchatka Seismic Stations

Journal article published in 2022 by K. S. Nepeina ORCID, V. A. An ORCID
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

This research fulfills additional information about the lithosphere below Southeastern Asia and the northern Pacific. The area is interesting for researchers because of the Kuril–Kamchatka subducted lithosphere. The availability to study an underground structure is complicated, because of Pacific Ocean. The significance of this research concerns epicentral distances ~54°–70° or ~6000–7000 km. During the Cold War of the 20th century and the classification of information between the largest nuclear states the Soviet Union (USSR) and the United States of America (USA), data on the registration of nuclear explosions were not published, however, underground nuclear explosions (UNE) were recorded. Thanks to an employee of the laboratory 5-s of the Institute of Physics of the Earth named after O.Yu. Schmidt of the USSR Academy of Sciences Kh.D. Rubinstein is kept at the Institute for the Dynamics of Geospheres of the Russian Academy of Sciences named after Academician M.A. Sadovsky (IDG RAS). Only after 1985 reports from some seismic stations of the former USSR began to be published in the operational reports of the United Geophysical Survey of the Russian Academy of Sciences (GS RAS). As it has not been yet published anywhere, we collect them and obtain the travel times were by revising seismograms from the archives IDG RAS and GS RAS for five Kuril–Kamchatka seismic stations (Bering, Esso, Severo-Kurilsk, Kurilsk). The 48 Unites States UNE at Pahute Mesa (at Nevada Test Site) from 1968 to 1990 are used for travel time curve building. We measure P waves travel times (tp) on historical seismograms for the ray travel path between Pahute Mesa tests and Kuril–Kamchatka stations. The body-waves magnitudes (mb) vary from 5.3 to 6.5. We obtain arrivals for: 1 UNE at Bering station, 7 UNE at Esso station, 45 UNE at Petropavlovsk, 18 UNE at Severo-Kurilsk and 12 at Kurilsk. We build a travel time function using linear regression algorithm as tp=k·Δ°+b, where Δ° is the epicentral distance, k and b are arbitrary constants. We show that travel time deviations, associated with nonlinearity of the Earth. We estimate the effective velocities of P waves for the Pahute Mesa – Kuril–Kamchatka travel path as coefficient k in the linear equation. Effective velocity is equal to 7.5 km/s.