Published in

BioScientifica, European Journal of Endocrinology, 6(184), p. 823-835, 2021

DOI: 10.1530/eje-20-1423

Links

Tools

Export citation

Search in Google Scholar

A novel patient-derived cell line of adrenocortical carcinoma shows a pathogenic role of germline MUTYH mutation and high tumour mutational burden

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background The response of advanced adrenocortical carcinoma (ACC) to current chemotherapies is unsatisfactory and a limited rate of response to immunotherapy was observed in clinical trials. High tumour mutational burden (TMB) and the presence of a specific DNA signature are characteristic features of tumours with mutations in the gene MUTYH encoding the mutY DNA glycosylase. Both have been shown to potentially predict the response to immunotherapy. High TMB in an ACC cell line model has not been reported yet. Design and methods The JIL-2266 cell line was established from a primary ACC tumour, comprehensively characterised and oxidative damage, caused by a dysfunctional mutY DNA glycosylase, confirmed. Results Here, we characterise the novel patient-derived ACC cell line JIL-2266, which is deficient in mutY-dependent DNA repair. JIL-2266 cells have a consistent STR marker profile that confirmed congruousness with primary ACC tumour. Cells proliferate with a doubling time of 41 ± 13 h. Immunohistochemistry revealed positivity for steroidogenic factor-1. Mass spectrometry did not demonstrate significant steroid hormone synthesis. JIL-2266 have hemizygous mutations in the tumour suppressor gene TP53 (c.859G>T:p.E287X) and MUTYH (c.316C>T:p.R106W). Exome sequencing showed 683 single nucleotide variants and 4 insertions/deletions. We found increased oxidative DNA damage in the cell line and the corresponding primary tumour caused by impaired mutY DNA glycosylase function and accumulation of 8-oxoguanine. Conclusion This model will be valuable as a pre-clinical ACC cell model with high TMB and a tool to study oxidative DNA damage in the adrenal gland.