Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Materials, 21(14), p. 6231, 2021

DOI: 10.3390/ma14216231

Links

Tools

Export citation

Search in Google Scholar

Advances Brought by Hydrophilic Ionic Liquids in Fields Involving Pharmaceuticals

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The negligible volatility and high tunable nature of ionic liquids (ILs) have been the main drivers of their investigation in a wide diversity of fields, among which is their application in areas involving pharmaceuticals. Although most literature dealing with ILs is still majorly devoted to hydrophobic ILs, evidence on the potential of hydrophilic ILs have been increasingly provided in the past decade, viz., ILs with improved therapeutic efficiency and bioavailability, ILs with the ability to increase drugs’ aqueous solubility, ILs with enhanced extraction performance for pharmaceuticals when employed in biphasic systems and other techniques, and ILs displaying low eco/cyto/toxicity and beneficial biological activities. Given their relevance, it is here overviewed the applications of hydrophilic ILs in fields involving pharmaceuticals, particularly focusing on achievements and advances witnessed during the last decade. The application of hydrophilic ILs within fields involving pharmaceuticals is here critically discussed according to four categories: (i) to improve pharmaceuticals solubility, envisioning improved bioavailability; (ii) as IL-based drug delivery systems; (iii) as pretreatment techniques to improve analytical methods performance dealing with pharmaceuticals, and (iv) in the recovery and purification of pharmaceuticals using IL-based systems. Key factors in the selection of appropriate ILs are identified. Insights and perspectives to bring renewed and effective solutions involving ILs able to compete with current commercial technologies are finally provided.