Dissemin is shutting down on January 1st, 2025

Published in

Life Science Alliance, Life Science Alliance, 12(5), p. e202101308, 2022

DOI: 10.26508/lsa.202101308

Links

Tools

Export citation

Search in Google Scholar

VEGFR3 modulates brain microvessel branching in a mouse model of 22q11.2 deletion syndrome

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The loss of a single copy of TBX1 accounts for most of the clinical signs and symptoms of 22q11.2 deletion syndrome, a common genetic disorder that is characterized by multiple congenital anomalies and brain-related clinical problems, some of which likely have vascular origins. Tbx1 mutant mice have brain vascular anomalies, thus making them a useful model to gain insights into the human disease. Here, we found that the main morphogenetic function of TBX1 in the mouse brain is to suppress vessel branching morphogenesis through regulation of Vegfr3. We demonstrate that inactivating Vegfr3 in the Tbx1 expression domain on a Tbx1 mutant background enhances brain vessel branching and filopodia formation, whereas increasing Vegfr3 expression in this domain fully rescued these phenotypes. Similar results were obtained using an in vitro model of endothelial tubulogenesis. Overall, the results of this study provide genetic evidence that VEGFR3 is a regulator of early vessel branching and filopodia formation in the mouse brain and is a likely mediator of the brain vascular phenotype caused by Tbx1 loss of function.