Published in

MDPI, International Journal of Molecular Sciences, 9(23), p. 4932, 2022

DOI: 10.3390/ijms23094932

Links

Tools

Export citation

Search in Google Scholar

Generation of Inducible BCL11B Knockout in TAL1/LMO1 Transgenic Mouse T Cell Leukemia/Lymphoma Model

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The B-cell CLL/lymphoma 11B gene (BCL11B) plays a crucial role in T-cell development, but its role in T-cell malignancies is still unclear. To study its role in the development of T-cell neoplasms, we generated an inducible BCL11B knockout in a murine T cell leukemia/lymphoma model. Mice, bearing human oncogenes TAL BHLH Transcription Factor 1 (TAL1; SCL) or LIM Domain Only 1 (LMO1), responsible for T-cell acute lymphoblastic leukemia (T-ALL) development, were crossed with BCL11B floxed and with CRE-ER/lox mice. The mice with a single oncogene BCL11Bflox/floxCREtg/tgTAL1tg or BCL11Bflox/floxCREtg/tgLMO1tg were healthy, bred normally, and were used to maintain the mice in culture. When crossed with each other, >90% of the double transgenic mice BCL11Bflox/floxCREtg/tgTAL1tgLMO1tg, within 3 to 6 months after birth, spontaneously developed T-cell leukemia/lymphoma. Upon administration of synthetic estrogen (tamoxifen), which binds to the estrogen receptor and activates the Cre recombinase, the BCL11B gene was knocked out by excision of its fourth exon from the genome. The mouse model of inducible BCL11B knockout we generated can be used to study the role of this gene in cancer development and the potential therapeutic effect of BCL11B inhibition in T-cell leukemia and lymphoma.