Published in

MDPI, Cancers, 9(14), p. 2078, 2022

DOI: 10.3390/cancers14092078

Links

Tools

Export citation

Search in Google Scholar

Genotyping of Circulating Free DNA Enables Monitoring of Tumor Dynamics in Synovial Sarcomas

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: Synovial sarcoma (SS) is a malignant soft tissue tumor of mesenchymal origin that frequently occurs in young adults. Translocation of the SYT gene on chromosome 18 to the SSX genes on chromosome X leads to the formation of oncogenic fusion genes, which lead to initiation and proliferation of tumor cells. The detection and quantification of circulating tumor DNA (ctDNA) can serve as a non-invasive method for diagnostics of local or distant tumor recurrence, which could improve survival rates due to early detection. Methods: We developed a subtype-specific targeted next-generation sequencing (NGS) approach specifically targeting SS t(X;18)(p11;q11), which fuses SS18 (SYT) in chromosome 18 to SSX1 or SSX2 in chromosome x, and recurrent point mutations. In addition, patient-specific panels were designed from tumor exome sequencing. Both approaches were used to quantify ctDNA in patients’ plasma. Results: The subtype-specific assay allowed detection of somatic mutations from 25/25 tumors with a mean of 1.68 targetable mutations. The minimal limit of detection was determined at a variant allele frequency of 0.05%. Analysis of 29 plasma samples from 15 tumor patients identified breakpoint ctDNA in 6 patients (sensitivity: 40%, specificity 100%). The addition of more mutations further increased assay sensitivity. Quantification of ctDNA in plasma samples (n = 11) from one patient collected over 3 years, with a patient-specific panel based on tumor exome sequencing, correlated with the clinical course, response to treatment and tumor volume. Conclusions: Targeted NGS allows for highly sensitive tumor profiling and non-invasive detection of ctDNA in SS patients, enabling non-invasive monitoring of tumor dynamics.