Published in

Springer Nature [academic journals on nature.com], Journal of Human Hypertension, 2(37), p. 93-100, 2022

DOI: 10.1038/s41371-022-00693-x

Links

Tools

Export citation

Search in Google Scholar

Automated ‘oscillometric’ blood pressure measuring devices: how they work and what they measure

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractAutomated ‘oscillometric’ blood pressure (BP) measuring devices (BPMDs) were developed in the 1970s to replace manual auscultatory BP measurement by mercury sphygmomanometer. Automated BPMDs that have passed accuracy testing versus a reference auscultatory sphygmomanometer using a scientifically accepted validation protocol are recommended for clinical use globally. Currently, there are many thousands of unique automated BPMDs manufactured by hundreds of companies, with each device using proprietary algorithms to estimate BP and using a method of operation that is largely unchanged since inception. Validated automated BPMDs provide similar BP values to those recorded using manual auscultation albeit with potential sources of error mostly associated with using empirical algorithms to derive BP from waveform pulsations. Much of the work to derive contemporary BP thresholds and treatment targets used to manage cardiovascular disease risk was obtained using automated BPMDs. While there is room for future refinement to improve accuracy for better individual risk stratification, validated BPMDs remain the recommended standard for office and out-of-office BP measurement to be used in hypertension diagnosis and management worldwide.