Nature Research, Scientific Reports, 1(12), 2022
DOI: 10.1038/s41598-022-05619-8
Full text: Download
AbstractCue-induced drug craving and disinhibition are two essential components of continued drug use and relapse in substance use disorders. While these phenomena develop and interact across time, the temporal dynamics of their underlying neural activity remain under-investigated. To explore these dynamics, an analysis of time-varying activation was applied to fMRI data from 62 men with methamphetamine use disorder in their first weeks of recovery in an abstinence-based treatment program. Using a mixed block-event, factorial cue-reactivity/Go-NoGo task and a sliding window across the task duration, dynamically-activated regions were identified in three linear mixed effects models (LMEs). Habituation to drug cues across time was observed in the superior temporal gyri, amygdalae, left hippocampus, and right precuneus, while response inhibition was associated with the sensitization of temporally-dynamic activations across many regions of the inhibitory frontoparietal network. Methamphetamine-related response inhibition was associated with temporally-dynamic activity in the parahippocampal gyri and right precuneus (corrected p-value < 0.001), which show a declining cue-reactivity contrast and an increasing response inhibition contrast. Overall, the declining craving-related activations (habituation) and increasing inhibition-associated activations (sensitization) during the task duration suggest the gradual recruitment of response inhibitory processes and a concurrent habituation to drug cues in areas with temporally-dynamic methamphetamine-related response inhibition. Furthermore, temporally dynamic cue-reactivity and response inhibition were correlated with behavioral and clinical measures such as the severity of methamphetamine use and craving, impulsivity and inhibitory task performance. This exploratory study demonstrates the time-variance of the neural activations undergirding cue-reactivity, response inhibition, and response inhibition during exposure to drug cues, and suggests a method to assess this dynamic interplay. Analyses that can capture temporal fluctuations in the neural substrates of drug cue-reactivity and response inhibition may prove useful for biomarker development by revealing the rate and pattern of sensitization and habituation processes, and may inform mixed cue-exposure intervention paradigms which could promote habituation to drug cues and sensitization in inhibitory control regions.