Published in

CSIRO Publishing, Reproduction, Fertility and Development, 12(33), p. 725-735, 2021

DOI: 10.1071/rd21074

Links

Tools

Export citation

Search in Google Scholar

Embryo structure reorganisation reduces the probability of apoptosis in preimplantation mouse embryos

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Programmed cell death plays a key role in mammalian development because the morphological events of an organism’s formation are dependent on apoptosis. In the mouse development, the first apoptotic waves occur physiologically at the blastocyst stage. Cell number and the mean nucleus to cytoplasm (N/C) ratio increase exponentially throughout subsequent embryo cleavages, while cell volume concurrently decreases from the zygote to blastocyst stage. In this study we tested the hypothesis that reorganisation of the embryo structure by manipulating cell number, the N/C ratio and the cell volume of 2-cell embryos may result in the earlier and more frequent occurrence of apoptosis. The results indicate that doubling (‘Aggregates’ group) or halving (‘Embryos 1/2’ group) the initial cell number and modifying embryo volume, ploidy (‘Embryos 4n’ group) and the N/C ratio (‘Embryos 2/1’ group) reduce the probability of apoptosis in the resulting embryos. There was a higher probability of apoptosis in the inner cell mass of the blastocyst, but apoptotic cells were never observed at the morula stage in any of the experimental groups. Thus, manipulation of cell number, embryo volume, the N/C ratio and ploidy cause subtle changes in the occurrence of apoptosis, although these are mostly dependent on embryo stage and cell lineage (trophectoderm or inner cell mass), which have the greatest effect on the probability of apoptosis.