Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Genome Biology and Evolution, 9(13), 2021

DOI: 10.1093/gbe/evab192

Links

Tools

Export citation

Search in Google Scholar

Whole-Genome Sequencing of a 900-Year-Old Human Skeleton Supports Two Past Migration Events from the Russian Far East to Northern Japan

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Recent studies on paleogenomics have reported some Paleolithic and Neolithic genomes that have provided new insights into the human population history in East and Northeast Asia. However, there remain some cases where more recent migration events need to be examined to elucidate the detailed formation process of local populations. Although the area around northern Japan is one of the regions archaeologically suggested to have been affected by migration waves after the Neolithic period, the genetic source of these migrations are still unclear. Thus, genomic data from such past migrant populations would be highly informative to clarify the detailed formation process of local populations in this region. Here, we report the genome sequence of a 900-year-old adult female (NAT002) belonging to the prehistoric Okhotsk people, who have been considered to be the past migrants to northern Japan after the Neolithic period. We found a close relationship between NAT002 and modern Lower Amur populations and past admixture events between the Amur, Jomon, and Kamchatka ancestries. The admixture dating suggested migration of Amur-related ancestry at approximately 1,600 BP, which is compatible with the archaeological evidence regarding the settlement of the Okhotsk people. Our results also imply migration of Kamchatka-related ancestry at approximately 2,000 BP. In addition, human leukocyte antigen (HLA) typing detected the HLA-B*40 allele, which is reported to increase the risk of arthritis, suggesting the genetic vulnerability of NAT002 to hyperostosis, which was observed around her chest clavicle.