Published in

Wiley Open Access, Journal of the American Heart Association, 3(11), 2022

DOI: 10.1161/jaha.121.023080

Links

Tools

Export citation

Search in Google Scholar

Bacteriophages Combined With Subtherapeutic Doses of Flucloxacillin Act Synergistically Against Staphylococcus aureus Experimental Infective Endocarditis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background The potential of phage therapy for the treatment of endovascular Staphylococcus aureus infections remains to be evaluated. Methods and Results The efficacy of a phage cocktail combining Herelleviridae phage vB_SauH_2002 and Podoviriae phage 66 was evaluated against a methicillin‐sensitive S. aureus strain in vitro and in vivo in a rodent model of experimental endocarditis. Six hours after bacterial challenge, animals were treated with (1) the phage cocktail. (2) subtherapeutic flucloxacillin dosage, (3) combination of the phage cocktail and flucloxacillin, or (4) saline. Bacterial loads in cardiac vegetations at 30 hours were the primary outcome. Secondary outcomes were phage loads at 30 hours in cardiac vegetations, blood, spleen, liver, and kidneys. We evaluated phage resistance 30 hours post infection in vegetations of rats under combination treatment. In vitro, phages synergized against S. aureus planktonic cells and the cocktail synergized with flucloxacillin to eradicated biofilms. In infected animals, the phage cocktail achieved bacteriostatic effect. The addition of low‐dose flucloxacillin elevated bacterial suppression (∆ of −5.25 log 10 colony forming unit/g [CFU/g] versus treatment onset, P <0.0001) and synergism was confirmed (∆ of −2.15 log 10 CFU/g versus low‐dose flucloxacillin alone, P <0.01). Importantly, 9/12 rats given the combination treatment had sterile vegetations at 30 hours. In vivo phage replication was partially suppressed by the antibiotic and selection of resistance to the Podoviridae component of the phage cocktail occurred. Plasma‐mediated inhibition of phage killing activity was observed in vitro. Conclusions Combining phages with a low‐dose standard of care antibiotic represents a promising strategy for the treatment of S. aureus infective endocarditis.