Published in

American Society of Clinical Oncology, Journal of Clinical Oncology, 10(40), p. 1091-1101, 2022

DOI: 10.1200/jco.21.01777

Links

Tools

Export citation

Search in Google Scholar

Positron Emission Tomography–Driven Strategy in Advanced Hodgkin Lymphoma: Prolonged Follow-Up of the AHL2011 Phase III Lymphoma Study Association Study

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

PURPOSE The AHL2011 study (ClinicalTrials.gov identifier: NCT01358747 ) demonstrated that a positron emission tomography (PET)-driven de-escalation strategy after two cycles of bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone (BEACOPP) provides similar progression-free survival (PFS) and overall survival (OS) and reduces early toxicity compared with a nonmonitored standard treatment. Here, we report, with a prolonged follow-up, the final study results. METHODS Patients with advanced Hodgkin lymphoma (stage III, IV, or IIB with mediastinum/thorax ratio > 0.33 or extranodal involvement) age 16-60 years were prospectively randomly assigned between 6 × BEACOPP and a PET-driven arm after 2 × BEACOPP delivering 4 × ABVD (doxorubicin, bleomycin, vinblastine, and dacarbazine) in PET2– and 4 × BEACOPP in PET2+ patients. PET performed after four cycles of chemotherapy had to be negative to complete the planned treatment. RESULTS In total, 823 patients were enrolled including 413 in the standard arm and 410 in the PET-driven arm. With a 67.2-month median follow-up, 5-year PFS (87.5% v 86.7%; hazard ratio [HR] = 1.07; 95% CI, 0.74 to 1.57; P = .67) and OS (97.7% in both arms; HR = 1.012; 95% CI, 0.50 to 2.10; P = .53) were similar in both randomization arms. In the whole cohort, full interim PET assessment predicted patients' 5-year PFS (92.3% in PET2–/PET4–, 75.4% [HR = 3.26; 95% CI, 18.3 to 5.77] in PET2+/PET4– and 46.5% [HR = 12.4; 95% CI, 7.31 to 19.51] in PET4+ patients, respectively; P < .0001) independent of international prognosis score. Five-year OS was also affected by interim PET results, and PET2+/PET4– patients (93.5%; HR = 3.3; 95% CI, 1.07 to 10.1; P = .036) and PET4+ patients (91.9%; HR = 3.756; 95% CI, 1.07 to 13.18; P = .038) had a significant lower OS than PET2–/PET4– patients (98.2%). Twenty-two patients (2.7%) developed a second primary malignancy, 13 (3.2%) and 9 (2.2%) in the standard and experimental arms, respectively. CONCLUSION The extended follow-up confirms the continued efficacy and favorable safety of AHL2011 PET-driven strategy, which is noninferior to standard six cycles of BEACOPP. PET4 provides additional prognostic information to PET2 and allows identifying patients with particularly poor prognosis.