Published in

American Meteorological Society, Monthly Weather Review, 2021

DOI: 10.1175/mwr-d-20-0113.1

Links

Tools

Export citation

Search in Google Scholar

Extended Range Arctic Sea Ice Forecast with Convolutional Long-Short Term Memory Networks

Journal article published in 2021 by Yang Liu, Laurens Bogaardt, Jisk Attema ORCID, Wilco Hazeleger ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractOperational Arctic sea ice forecasts are of crucial importance to science and to society in the Arctic region. Currently, statistical and numerical climate models are widely used to generate the Arctic sea ice forecasts at weather time-scales. Numerical models require near real-time input of relevant environmental conditions consistent with the model equations and they are computationally expensive. In this study, we propose a deep learning approach, namely Convolutional Long Short Term Memory Networks (ConvLSTM), to forecast sea ice in the Barents Sea at weather to sub-seasonal time scales. This is an unsupervised learning approach. It makes use of historical records and it exploits the covariances between different variables, including spatial and temporal relations. With input fields from reanalysis data, we demonstrate that ConvLSTM is able to learn the variability of the Arctic sea ice and can forecast regional sea ice concentration skillfully at weekly to monthly time scales. It preserves the physical consistency between predictors and predictands, and generally outperforms forecasts with climatology, persistence and a statistical model. Based on the known sources of predictability, sensitivity tests with different climate fields as input for learning were performed. The impact of different predictors on the quality of the forecasts are evaluated and we demonstrate that the surface energy budget components have a large impact on the predictability of sea ice at weather time scales. This method is promising to enhance operational Arctic sea ice forecasting in the near future.