Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 16(119), 2022

DOI: 10.1073/pnas.2117857119

Links

Tools

Export citation

Search in Google Scholar

Hereditary retinoblastoma iPSC model reveals aberrant spliceosome function driving bone malignancies

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Rare human hereditary disorders provide unequivocal evidence of the role of gene mutations in human disease pathogenesis and offer powerful insights into their influence on human disease development. Using a hereditary retinoblastoma (RB) patient–derived induced pluripotent stem cell (iPSC) platform, we elucidate the role of pRB/E2F3a in regulating spliceosomal gene expression. Pharmacological inhibition of the spliceosome in RB1 -mutant cells preferentially increases splicing abnormalities of genes involved in cancer-promoting signaling and impairs cell proliferation and tumorigenesis. Expression of pRB/E2F3a–regulated spliceosomal proteins is negatively associated with pRB expression and correlates with poor clinical outcomes of osteosarcoma (OS) patients. Our findings strongly indicate that the spliceosome is an “Achilles’ heel” of RB1 -mutant OS.