Published in

Cold Spring Harbor Laboratory Press, Genome Research, 11(31), p. 2131-2137, 2021

DOI: 10.1101/gr.275777.121

Links

Tools

Export citation

Search in Google Scholar

Efficient computation of Faith's phylogenetic diversity with applications in characterizing microbiomes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The number of publicly available microbiome samples is continually growing. As data set size increases, bottlenecks arise in standard analytical pipelines. Faith's phylogenetic diversity (Faith's PD) is a highly utilized phylogenetic alpha diversity metric that has thus far failed to effectively scale to trees with millions of vertices. Stacked Faith's phylogenetic diversity (SFPhD) enables calculation of this widely adopted diversity metric at a much larger scale by implementing a computationally efficient algorithm. The algorithm reduces the amount of computational resources required, resulting in more accessible software with a reduced carbon footprint, as compared to previous approaches. The new algorithm produces identical results to the previous method. We further demonstrate that the phylogenetic aspect of Faith's PD provides increased power in detecting diversity differences between younger and older populations in the FINRISK study's metagenomic data.