Published in

MDPI, Journal of Marine Science and Engineering, 12(9), p. 1328, 2021

DOI: 10.3390/jmse9121328

Links

Tools

Export citation

Search in Google Scholar

Assessment of Water Quality and Phytoplankton Structure of Eight Alexandria Beaches, Southeastern Mediterranean Sea, Egypt

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This study aims to investigate the abundance, community, and structure of phytoplankton, physicochemical parameters, and some eutrophication state indices, to estimate the water quality of eight selected beaches along the Alexandria Coast, in the southeast of the Mediterranean Sea. The samples were collected monthly from 2019 to 2020. Nutrient values ranged from 1.54 to 33.21 µM for nitrate, 0.01 to 1.98 µM for nitrite, 0.12 to 9.45 µM for ammonia, 0.01 to 1.54 µM for phosphate, and 0.67 to 29.53 µM for silicate. Phytoplankton biomass was characterized by chlorophyll-a concentration, which fluctuated between 0.12 and 12.31 µg L−1. The annual phytoplankton average was 63.85 ± 17.83 × 103 cells L−1. Phytoplankton was highly diversified (228 taxa), and the most diversified group was diatoms (136 taxa), followed by a remarkably low number of Dinophyta (36 taxa). Diatoms reached maximum abundance in December. Meanwhile, a dense bloom of microalga Chlorella marina occurred in June on some beaches. High temperature, high dissolved inorganic nitrogen, and less-saline waters have supported green algal proliferation. The Shannon–Wiener diversity index (H’) showed that there was a qualitative seasonal difference in the composition of the phytoplankton community. Waters of beaches 1–3 were classified as between clean and moderately polluted; and beaches 4–8 varied between moderately and heavily polluted. The study revealed that human activities might have triggered the algal bloom and may be responsible for alterations in the Alexandria coast ecosystem.