Dissemin is shutting down on January 1st, 2025

Published in

Universidade Federal de Goiás, Ciência Animal Brasileira, (22), 2021

DOI: 10.1590/1809-6891v22e-66677

Links

Tools

Export citation

Search in Google Scholar

Dormancy-breaking treatments and soil types on Chamaecrista rotundifolia emergence and initial development

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Abstract Chamaecrista rotundifolia is a legume of high yield and nutritional value for livestock; however, it presents high seed dormancy. The aim of this study was to evaluate dormancy-breaking methods and the influence of soil texture on seedling emergence and initial development of C. rotundifolia. The experiment was performed in a greenhouse in a split-plot design with five replications. There were three treatments including dormancy-breaking techniques with immersion of the seeds in (1) hot water at 80°C for 30 s followed by 12 h in water at room temperature (25 °C; HW); (2) water at room temperature (25 °C) for 24 h (EW); and (3) hydrochloric acid (0.05 mol L-1) for 15 min (HA) (4) and a control group with no seed intervention, disposed in the main plots in randomized blocks. Seeds were cropped in two types of soil as subplots. Seedling emergence was evaluated daily to calculate the percentage emergence and emergence speed index. Plant performance was evaluated (21 days after sowing) through measurements of mass and length of components. Chamaecrista rotundifolia showed a high degree of dormancy in the seeds, and the treatment using HW had greater efficiency in seedling emergence (p < 0.01) and emergence speed index (p < 0.05). Total dry mass was superior in sandy soil (p < 0.05). Soil texture and dormancy treatments influenced the initial performance of plants, which performed better in sandy soil.