Published in

MDPI, Plants, 5(10), p. 1007, 2021

DOI: 10.3390/plants10051007

Links

Tools

Export citation

Search in Google Scholar

Effect of Cadmium Chloride and Cadmium Nitrate on Growth and Mineral Nutrient Content in the Root of Fava Bean (Vicia faba L.)

Journal article published in 2021 by Beáta Piršelová ORCID, Emília Ondrušková ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The present study aimed to analyze the differences in the tolerance of fava bean (Vicia faba cv. Aštar) roots to cadmium in nitrate—Cd(NO3)2—and chloride—CdCl2—solutions. The physiological and biochemical parameters were assessed. The tested doses of Cd (50, 100, 150 and 300 mg/L) did not influence the germination of seeds. However, considerable growth inhibition and dehydration were observed after 96 h incubation. The thickness of roots and rupture of cell membranes increased along with the increasing concentration of the metal in the solution. At a Cd dose of 300 mg/L, irrespective of the solution used, increased nitrogen concentration and no change in sodium content were observed. The content of magnesium increased due to the dose of 100 mg/L (cadmium nitrate) and the content of calcium increased due to the dose of 300 mg/L (in either nitrate or chloride). The correlation analyses pointed to a possible effect of nitrates in the applied solutions on the accumulation of Cd and some minerals in the roots of the given variety of fava bean. This may be important for both research and agricultural practice. The identification of crops with high tolerance to cadmium, as well as knowledge about the mechanisms of ion interactions at the soil solution–plant level, is important in terms of such crops’ use in the process of the remediation of cadmium-contaminated soils coupled with food production.