Published in

MDPI, Brain Sciences, 11(11), p. 1535, 2021

DOI: 10.3390/brainsci11111535

Links

Tools

Export citation

Search in Google Scholar

Relationship between Amyloid-β Deposition and the Coupling between Structural and Functional Brain Networks in Patients with Mild Cognitive Impairment and Alzheimer’s Disease

Journal article published in 2021 by Hui Zhang ORCID, Edward S. Hui ORCID, Peng Cao, Henry K. F. Mak ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Previous studies have demonstrated that the accumulation of amyloid-β (Aβ) pathologies has distinctive stage-specific effects on the structural and functional brain networks along the Alzheimer’s disease (AD) continuum. A more comprehensive account of both types of brain network may provide a better characterization of the stage-specific effects of Aβ pathologies. A potential candidate for this joint characterization is the coupling between the structural and functional brain networks (SC-FC coupling). We therefore investigated the effect of Aβ accumulation on global SC-FC coupling in patients with mild cognitive impairment (MCI), AD, and healthy controls. Patients with MCI were dichotomized according to their level of Aβ pathology seen in 18F-flutemetamol PET-CT scans—namely, Aβ-negative and Aβ-positive. Our results show that there was no difference in global SC-FC coupling between different cohorts. During the prodromal AD stage, there was a significant negative correlation between the level of Aβ pathology and the global SC-FC coupling of MCI patients with positive Aβ, but no significant correlation for MCI patients with negative Aβ. During the AD dementia stage, the correlation between Aβ pathology and global SC-FC coupling in patients with AD was positive. Our results suggest that Aβ pathology has distinctive stage-specific effects on global coupling between the structural and functional brain networks along the AD continuum.