Published in

American Astronomical Society, Astrophysical Journal, 2(922), p. 173, 2021

DOI: 10.3847/1538-4357/ac2818

Links

Tools

Export citation

Search in Google Scholar

Dissecting the Local Environment of FRB 190608 in the Spiral Arm of its Host Galaxy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We present a high-resolution analysis of the host galaxy of fast radio burst (FRB) 190608, an SB(r)c galaxy at z = 0.11778 (hereafter HG 190608), to dissect its local environment and its contributions to the FRB properties. Our Hubble Space Telescope Wide Field Camera 3 ultraviolet and visible light image reveals that the subarcsecond localization of FRB 190608 is coincident with a knot of star formation (ΣSFR = 1.5 × 10−2 M yr−1 kpc−2) in the northwest spiral arm of HG 190608. Using Hβ emission present in our Keck Cosmic Web Imager integral field spectrum of the galaxy with a surface brightness of μ H β = ( 3.36 ± 0.21 ) × 10 − 17 erg s − 1 cm − 2 arcsec − 2 , we infer an extinction-corrected Hα surface brightness and compute a dispersion measure (DM) from the interstellar medium of HG 190608 of DMHost,ISM = 94 ± 38 pc cm−3. The galaxy rotates with a circular velocity v circ = 141 ± 8 km s−1 at an inclination i gas = 37° ± 3°, giving a dynamical mass M halo dyn ≈ 10 11.96 ± 0.08 M ⊙ . This implies a halo contribution to the DM of DMHost,Halo = 55 ± 25 pc cm−3 subject to assumptions on the density profile and fraction of baryons retained. From the galaxy rotation curve, we infer a bar-induced pattern speed of Ω p = 34 ± 6 km s−1 kpc−1 using linear resonance theory. We then calculate the maximum time since star formation for a progenitor using the furthest distance to the arm’s leading edge within the localization, and find t enc = 21 − 6 + 25 Myr. Unlike previous high-resolution studies of FRB environments, we find no evidence of disturbed morphology, emission, or kinematics for FRB 190608.