Dissemin is shutting down on January 1st, 2025

Published in

Society for Neuroscience, Journal of Neuroscience, 17(41), p. 3900-3916, 2021

DOI: 10.1523/jneurosci.0033-21.2021

Links

Tools

Export citation

Search in Google Scholar

Activation of MrgprA3 and MrgprC11 on Bladder-Innervating Afferents Induces Peripheral and Central Hypersensitivity to Bladder Distension

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Understanding the sensory mechanisms innervating the bladder is paramount to developing efficacious treatments for chronic bladder hypersensitivity conditions. The contribution of Mas-gene-related G protein-coupled receptors (Mrgpr) to bladder signaling is currently unknown. Using male and female mice, we show with single-cell RT-PCR that subpopulations of DRG neurons innervating the mouse bladder expressMrgprA3(14%) andMrgprC11(38%), either individually or in combination, with high levels of coexpression withTrpv1(81%-89%). Calcium imaging studies demonstrated MrgprA3 and MrgprC11 agonists (chloroquine, BAM8-22, and neuropeptide FF) activated subpopulations of bladder-innervating DRG neurons, showing functional evidence of coexpression between MrgprA3, MrgprC11, and TRPV1. Inex vivobladder-nerve preparations, chloroquine, BAM8-22, and neuropeptide FF all evoked mechanical hypersensitivity in subpopulations (20%-41%) of bladder afferents. These effects were absent in recordings fromMrgpr-clusterΔ−/−mice.In vitrowhole-cell patch-clamp recordings showed that application of an MrgprA3/C11 agonist mixture induced neuronal hyperexcitability in 44% of bladder-innervating DRG neurons. Finally,in vivoinstillation of an MrgprA3/C11 agonist mixture into the bladder of WT mice induced a significant activation of dorsal horn neurons within the lumbosacral spinal cord, as quantified by pERK immunoreactivity. This MrgprA3/C11 agonist-induced activation was particularly apparent within the superficial dorsal horn and the sacral parasympathetic nuclei of WT, but notMrgpr-clusterΔ−/−mice. This study demonstrates, for the first time, functional expression of MrgprA3 and MrgprC11 in bladder afferents. Activation of these receptors triggers hypersensitivity to distension, a critically valuable factor for therapeutic target development.SIGNIFICANCE STATEMENTDetermining how bladder afferents become sensitized is the first step in finding effective treatments for common urological disorders such as overactive bladder and interstitial cystitis/bladder pain syndrome. Here we show that two of the key receptors, MrgprA3 and MrgprC11, that mediate itch from the skin are also expressed on afferents innervating the bladder. Activation of these receptors results in sensitization of bladder afferents, resulting in sensory signals being sent into the spinal cord that prematurely indicate bladder fullness. Targeting bladder afferents expressing MrgprA3 or MrgprC11 and preventing their sensitization may provide a novel approach for treating overactive bladder and interstitial cystitis/bladder pain syndrome.