Published in

Springer Nature [academic journals on nature.com], Translational Psychiatry, 1(11), 2021

DOI: 10.1038/s41398-021-01540-2

Links

Tools

Export citation

Search in Google Scholar

N-methyl-D-aspartate receptor availability in first-episode psychosis: a PET-MR brain imaging study

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractN-methyl-D-aspartate receptor (NMDAR) hypofunction is hypothesised to underlie psychosis but this has not been tested early in illness. To address this, we studied 40 volunteers (21 patients with first-episode psychosis and 19 matched healthy controls) using PET imaging with an NMDAR selective ligand, [18F]GE-179, that binds to the ketamine binding site to index its distribution volume ratio (DVR) and volume of distribution (VT). Hippocampal DVR, but not VT, was significantly lower in patients relative to controls (p = 0.02, Cohen’s d = 0.81; p = 0.15, Cohen’s d = 0.49), and negatively associated with total (rho = −0.47, p = 0.04), depressive (rho = −0.67, p = 0.002), and general symptom severity (rho = −0.74, p < 0.001). Exploratory analyses found no significant differences in other brain regions (anterior cingulate cortex, thalamus, striatum and temporal cortex). These findings are consistent with the NMDAR hypofunction hypothesis and identify the hippocampus as a key locus for relative NMDAR hypofunction, although further studies should test specificity and causality.