Published in

MDPI, Nanomaterials, 3(12), p. 570, 2022

DOI: 10.3390/nano12030570

Links

Tools

Export citation

Search in Google Scholar

Electrical and Optical Characterization of CsPbCl3 Films around the High-Temperature Phase Transitions

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Large-area CsPbCl3 films in the range 0.1–1.5 μm have been grown by radio frequency (RF)-magnetron sputtering on glass substrates by means of a one-step procedure. Three structural phase transitions have been detected, which are associated with hysteresis behavior in the electrical current when measured as a function of temperature in the range 295–330 K. Similarly, photoluminescence (PL) experiments in the same temperature range bring evidence of a non-monotonic shift of the PL peak. Detailed electrical characterizations evidenced how phase transitions are not influencing detrimentally the electrical transport properties of the films. In particular, the activation energy (0.6–0.8 eV) extracted from the temperature-dependent film resistivity does not appear to be correlated with phase changes. A non-linear trend of the photoconductivity response as a function of a ultra violet (UV) 365 nm light emitting diode (LED) power has been interpreted considering the presence of an exponential tail of intragap defects. Thermally stimulated currents after exposure with the same LED measured from room temperature up to 370 K showed no evidence of trapping effects due to intragap states on the electrical transport properties at room temperature of the films. As a consequence, measured photocurrents at room temperature appear to be well reproducible and stable in time, which are attractive features for possible future applications in photodetection.