Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 3(504), p. 4160-4191, 2021

DOI: 10.1093/mnras/stab1065

Links

Tools

Export citation

Search in Google Scholar

Dynamical masses and mass-to-light ratios of resolved massive star clusters – II. Results for 26 star clusters in the Magellanic Clouds

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We present spectroscopy of individual stars in 26 Magellanic Cloud (MC) star clusters with the aim of estimating dynamical masses and V-band mass-to-light (M/LV) ratios over a wide range in age and metallicity. We obtained 3137 high-resolution stellar spectra with M2FS on the Magellan/Clay Telescope. Combined with 239 published spectroscopic results of comparable quality, we produced a final sample of 2787 stars with good quality spectra for kinematic analysis in the target clusters. Line-of-sight velocities measured from these spectra and stellar positions within each cluster were used in a customized expectation-maximization (EM) technique to estimate cluster membership probabilities. Using appropriate cluster structural parameters and corresponding single-mass dynamical models, this technique ultimately provides self-consistent total mass and M/LV estimates for each cluster. Mean metallicities for the clusters were also obtained and tied to a scale based on calcium IR triplet metallicities. We present trends of the cluster M/LV values with cluster age, mass, and metallicity, and find that our results run about 40 per cent on average lower than the predictions of a set of simple stellar population (SSP) models. Modified SSP models that account for internal and external dynamical effects greatly improve agreement with our results, as can models that adopt a strongly bottom-light IMF. To the extent that dynamical evolution must occur, a modified IMF is not required to match data and models. In contrast, a bottom-heavy IMF is ruled out for our cluster sample as this would lead to higher predicted M/LV values, significantly increasing the discrepancy with our observations.