Dissemin is shutting down on January 1st, 2025

Published in

INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 5(16), 2021

DOI: 10.15837/ijccc.2021.5.4258

Links

Tools

Export citation

Search in Google Scholar

Video Streaming Service Identification on Software-Defined Networking

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

It is well known that video streaming is the major network traffic today. Futhermore, the traffic generated by video streaming is expected to increase exponentially. On the other hand, SoftwareDefined Networking (SDN) has been considered a viable solution to cope with the complexity and increasing network traffic due to its centralised control and programmability features. These features, however, do not guarantee that network performance will not suffer as traffic grows. As result, understanding video traffic and optimising video traffic can aid in control various aspects of network performance, such as bandwidth utilisation, dynamic routing, and Quality of Service (QoS). This paper presents an approach to identify video streaming traffic in SDN and investigates the feasibility of using Knowledge-Defined Networking (KDN) in traffic classification. KDN is a networking paradigm that takes advantage of Artificial Intelligence (AI) by using Machine Learning approaches, which allows integrating behavioural models to detect patterns, like video streaming traffic identification, in SDN traffic. In our initial proof-of-concept, we derive the relevant information of network traffic in the form of flows statistics. Then, we used such information to train six ML models that can classify network traffic into three types, Video on Demand (VoD), Livestream, and no-video traffic. Our proof-of-concept demonstrates that our approach is applicable and that we can identify and classify video streaming traffic with 97.5% accuracy using the Decision Tree model.