Published in

Genetics Society of America, G3, 1(12), 2021

DOI: 10.1093/g3journal/jkab372

Links

Tools

Export citation

Search in Google Scholar

Sexual dimorphism and the effect of wild introgressions on recombination in cassava (Manihot esculenta Crantz) breeding germplasm

Journal article published in 2021 by Ariel W. Chan, Seren S. Villwock ORCID, Amy L. Williams, Jean-Luc Jannink ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Abstract Recombination has essential functions in meiosis, evolution, and breeding. The frequency and distribution of crossovers dictate the generation of new allele combinations and can vary across species and between sexes. Here, we examine recombination landscapes across the 18 chromosomes of cassava (Manihot esculenta Crantz) with respect to male and female meioses and known introgressions from the wild relative Manihot glaziovii. We used SHAPEIT2 and duoHMM to infer crossovers from genotyping-by-sequencing data and a validated multigenerational pedigree from the International Institute of Tropical Agriculture cassava breeding germplasm consisting of 7020 informative meioses. We then constructed new genetic maps and compared them to an existing map previously constructed by the International Cassava Genetic Map Consortium. We observed higher recombination rates in females compared to males, and lower recombination rates in M. glaziovii introgression segments on chromosomes 1 and 4, with suppressed recombination along the entire length of the chromosome in the case of the chromosome 4 introgression. Finally, we discuss hypothesized mechanisms underlying our observations of heterochiasmy and crossover suppression and discuss the broader implications for plant breeding.