Published in

Oxford University Press, Genome Biology and Evolution, 8(13), 2021

DOI: 10.1093/gbe/evab146

Links

Tools

Export citation

Search in Google Scholar

The Evolution of the Cytochrome c6 Family of Photosynthetic Electron Transfer Proteins

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract During photosynthesis, electrons are transferred between the cytochrome b6f complex and photosystem I. This is carried out by the protein plastocyanin in plant chloroplasts, or by either plastocyanin or cytochrome c6 in many cyanobacteria and eukaryotic algal species. There are three further cytochrome c6 homologs: cytochrome c6A in plants and green algae, and cytochromes c6B and c6C in cyanobacteria. The function of these proteins is unknown. Here, we present a comprehensive analysis of the evolutionary relationship between the members of the cytochrome c6 family in photosynthetic organisms. Our phylogenetic analyses show that cytochromes c6B and c6C are likely to be orthologs that arose from a duplication of cytochrome c6, but that there is no evidence for separate origins for cytochromes c6B and c6C. We therefore propose renaming cytochrome c6C as cytochrome c6B. We show that cytochrome c6A is likely to have arisen from cytochrome c6B rather than by an independent duplication of cytochrome c6, and present evidence for an independent origin of a protein with some of the features of cytochrome c6A in peridinin dinoflagellates. We conclude with a new comprehensive model of the evolution of the cytochrome c6 family which is an integral part of understanding the function of the enigmatic cytochrome c6 homologs.