Published in

MDPI, Biosensors, 7(11), p. 243, 2021

DOI: 10.3390/bios11070243

Links

Tools

Export citation

Search in Google Scholar

A Sarcopenia Detection System Using an RGB-D Camera and an Ultrasound Probe: Eye-in-Hand Approach

Journal article published in 2021 by Yeoun-Jae Kim ORCID, Jueun Choi ORCID, Jungwoo Moon ORCID, Kyung Rim Sung, Jaesoon Choi
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Skeletal muscle mass deficiency and quality degradation constitute sarcopenia for elderly people. Sarcopenia can result in musculoskeletal damage and accompany various metabolic problems, which make early sarcopenia diagnosis important. Various modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), have been developed for screening sarcopenia. Recently, ultrasound scanning was suggested for screening sarcopenia because of its safety, usability, and cost effectiveness. However, there has been no standardized assessment methodology for screening sarcopenia with ultrasound scanning. Therefore, prior to this study, we developed a four-degrees-of-freedom (DOF) sarcopenia detection system using an RGB-D camera and an ultrasound probe to automatically scan the human thigh without operator dependency. However, due to the eye-to-hand approach with the RGB-D camera, the system has limited usability for clinical trials. Therefore, in this study we modified the system such that it became eye-in-hand by attaching the RGB-D camera to the upper part of the system with an enhanced arc fitting algorithm. The modified system and enhanced algorithm were verified by an in-vitro test with bean curd-gelatin phantom. The results showed that the thickness of bean curd in the gelatin phantom was maintained at approximately 12.7 ± 0.35 mm over the 71.5∘ scanning range with 2.49 ± 0.15 N radial force at various thickness measuring points.