Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Remote Sensing, 16(13), p. 3185, 2021

DOI: 10.3390/rs13163185

Links

Tools

Export citation

Search in Google Scholar

Extraction of Areas of Rice False Smut Infection Using UAV Hyperspectral Data

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Rice false smut (RFS), caused by Ustilaginoidea virens, is a significant grain disease in rice that can lead to reduced yield and quality. In order to obtain spatiotemporal change information, multitemporal hyperspectral UAV data were used in this study to determine the sensitive wavebands for RFS identification, 665–685 and 705–880 nm. Then, two methods were used for the extraction of rice false smut-infected areas, one based on spectral similarity analysis and one based on spectral and temporal characteristics. The final overall accuracy of the two methods was 74.23 and 85.19%, respectively, showing that the second method had better prediction accuracy. In addition, the classification results of the two methods show that the areas of rice false smut infection had an expanding trend over time, which is consistent with the natural development law of rice false smut, and also shows the scientific nature of the two methods.