Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 23(119), 2022

DOI: 10.1073/pnas.2117858119

Links

Tools

Export citation

Search in Google Scholar

Responsive robotic prey reveal how predators adapt to predictability in escape tactics

Journal article published in 2021 by Andrew W. Szopa Comley, Christos C. Ioannou ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance A widespread strategy used by prey animals, seen in insects, mammals, amphibians, crustaceans, fish, and reptiles, is to vary the direction in which they escape when attacked by a predator. This unpredictability is thought to benefit prey by inhibiting predators from predicting the prey’s escape trajectory, but experimental evidence is lacking. Using fish predators repeatedly tested with interactive, robot-controlled prey escaping in the same (predictable) or in random (unpredictable) directions, we find no clear benefit to prey of escaping unpredictably, driven by behavioral counteradaptation by the predators. The benefit of unpredictable escape behavior may depend on whether predators are able to counteract prey escape tactics by flexibly modifying their behavior, or unpredictability may instead be explained biomechanical or sensory constraints.