Published in

Springer (part of Springer Nature), Biological Invasions, 3(24), p. 845-860, 2021

DOI: 10.1007/s10530-021-02690-6

Links

Tools

Export citation

Search in Google Scholar

Simulated encounters with a novel competitor reveal the potential for maladaptive behavioural responses to invasive species

Journal article published in 2021 by T. Champneys ORCID, K. Ferry, S. Tomkinson, M. J. Genner, C. C. Ioannou ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractDuring the early stage of biological invasions, interactions occur between native and non-native species that do not share an evolutionary history. This can result in ecological naïveté, causing native species to exhibit maladaptive behavioural responses to novel enemies, leading to negative consequences for individual fitness and ecosystem function. The behavioural response of native to non-native species during novel encounters can determine the impact of non-native species, and restrict or facilitate their establishment. In this study we simulated novel encounters between a widespread invasive fish species, the Nile tilapia (Oreochromis niloticus), and a threatened native Manyara tilapia (Oreochromis amphimelas). In the first experiment single adult O. niloticus were presented with a stimulus chamber (a transparent plastic cylinder) which was empty during control trials and contained a pair of juvenile O. amphimelas in stimulus trials. In the second experiment, the reciprocal set up was used, with pairs of juvenile O. amphimelas as the focal species and adult O. niloticus as the stimulus. Both species approached the stimulus chamber more readily during stimulus trials, a behavioural response which would increase the prevalence of interspecific interactions in situ. This included physical aggression, observed from the competitively dominant O. niloticus towards O. amphimelas. Despite an initial lack of fear shown by O. amphimelas, close inspection of the stimulus chamber often resulted in an energetically costly dart response. Under field conditions we predict that naïve native individuals may readily approach O. niloticus, increasing the likelihood of interactions and exacerbating widely reported negative outcomes.