Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Molecules, 12(26), p. 3730, 2021

DOI: 10.3390/molecules26123730

Links

Tools

Export citation

Search in Google Scholar

Further Validation of Quantum Crystallography Approaches

Journal article published in 2021 by Monika Wanat ORCID, Maura Malinska ORCID, Anna A. Hoser ORCID, Krzysztof Woźniak ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Quantum crystallography is a fast-developing multidisciplinary area of crystallography. In this work, we analyse the influence of different charge density models (i.e., the multipole model (MM), Hirshfeld atom refinement (HAR), and the transferable aspherical atom model (TAAM)), modelling of the thermal motion of hydrogen atoms (anisotropic, isotropic, and with the aid of SHADE or NoMoRe), and the type of radiation used (Mo Kα and Cu Kα) on the final results. To achieve this aim, we performed a series of refinements against X-ray diffraction data for three model compounds and compared their final structures, geometries, shapes of ADPs, and charge density distributions. Our results were also supported by theoretical calculations that enabled comparisons of the lattice energies of these structures. It appears that geometrical parameters are better described (closer to the neutron values) when HAR is used; however, bonds to H atoms more closely match neutron values after MM or TAAM refinement. Our analysis shows the superiority of the NoMoRe method in the description of H-atom ADPs. Moreover, the shapes of the ADPs of H atoms, as well as their electron density distributions, were better described with low-resolution Cu Kα data in comparison to low-resolution Mo Kα data.